Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Mol Biol Cell ; 35(6): ar79, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38598294

RESUMEN

The symbiotic relationship between the bioluminescent bacterium Vibrio fischeri and the bobtail squid Euprymna scolopes serves as a valuable system to investigate bacterial growth and peptidoglycan (PG) synthesis within animal tissues. To better understand the growth dynamics of V. fischeri in the crypts of the light-emitting organ of its juvenile host, we showed that, after the daily dawn-triggered expulsion of most of the population, the remaining symbionts rapidly proliferate for ∼6 h. At that point the population enters a period of extremely slow growth that continues throughout the night until the next dawn. Further, we found that PG synthesis by the symbionts decreases as they enter the slow-growing stage. Surprisingly, in contrast to the most mature crypts (i.e., Crypt 1) of juvenile animals, most of the symbiont cells in the least mature crypts (i.e., Crypt 3) were not expelled and, instead, remained in the slow-growing state throughout the day, with almost no cell division. Consistent with this observation, the expression of the gene encoding the PG-remodeling enzyme, L,D-transpeptidase (LdtA), was greatest during the slowly growing stage of Crypt 1 but, in contrast, remained continuously high in Crypt 3. Finally, deletion of the ldtA gene resulted in a symbiont that grew and survived normally in culture, but was increasingly defective in competing against its parent strain in the crypts. This result suggests that remodeling of the PG to generate additional 3-3 linkages contributes to the bacterium's fitness in the symbiosis, possibly in response to stresses encountered during the very slow-growing stage.


Asunto(s)
Aliivibrio fischeri , Decapodiformes , Peptidoglicano , Simbiosis , Simbiosis/fisiología , Aliivibrio fischeri/fisiología , Aliivibrio fischeri/metabolismo , Animales , Decapodiformes/microbiología , Decapodiformes/fisiología , Peptidoglicano/metabolismo , Peptidoglicano/biosíntesis , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
2.
Sci Rep ; 14(1): 2912, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316910

RESUMEN

The innate immune response is the first line of defense for all animals to not only detect invading microbes and toxins but also sense and interface with the environment. One such environment that can significantly affect innate immunity is spaceflight. In this study, we explored the impact of microgravity stress on key elements of the NFκB innate immune pathway. The symbiosis between the bobtail squid Euprymna scolopes and its beneficial symbiont Vibrio fischeri was used as a model system under a simulated microgravity environment. The expression of genes associated with the NFκB pathway was monitored over time as the symbiosis progressed. Results revealed that although the onset of the symbiosis was the major driver in the differential expression of NFκB signaling, the stress of simulated low-shear microgravity also caused a dysregulation of expression. Several genes were expressed at earlier time points suggesting that elements of the E. scolopes NFκB pathway are stress-inducible, whereas expression of other pathway components was delayed. The results provide new insights into the role of NFκB signaling in the squid-vibrio symbiosis, and how the stress of microgravity negatively impacts the host immune response. Together, these results provide a foundation to develop mitigation strategies to maintain host-microbe homeostasis during spaceflight.


Asunto(s)
Vibrio , Ingravidez , Animales , Simbiosis , Inmunidad Innata , Aliivibrio fischeri/fisiología , Decapodiformes/fisiología
3.
PLoS One ; 18(7): e0287519, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440554

RESUMEN

Most animals establish long-term symbiotic associations with bacteria that are critical for normal host physiology. The symbiosis that forms between the Hawaiian squid Euprymna scolopes and the bioluminescent bacterium Vibrio fischeri serves as an important model system for investigating the molecular mechanisms that promote animal-bacterial symbioses. E. scolopes hatch from their eggs uncolonized, which has led to the development of squid-colonization assays that are based on introducing culture-grown V. fischeri cells to freshly hatched juvenile squid. Recent studies have revealed that strains often exhibit large differences in how they establish symbiosis. Therefore, we sought to develop a simplified and reproducible protocol that permits researchers to determine appropriate inoculum levels and provides a platform to standardize the assay across different laboratories. In our protocol, we adapt a method commonly used for evaluating the infectivity of pathogens to quantify the symbiotic capacity of V. fischeri strains. The resulting metric, the symbiotic dose-50 (SD50), estimates the inoculum level that is necessary for a specific V. fischeri strain to establish a light-emitting symbiosis. Relative to other protocols, our method requires 2-5-fold fewer animals. Furthermore, the power analysis presented here suggests that the protocol can detect up to a 3-fold change in the SD50 between different strains.


Asunto(s)
Aliivibrio fischeri , Vibrio , Animales , Aliivibrio fischeri/fisiología , Simbiosis/fisiología , Decapodiformes/fisiología , Hawaii
4.
mBio ; 13(4): e0167122, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35916402

RESUMEN

During colonization of the Hawaiian bobtail squid (Euprymna scolopes), Vibrio fischeri bacteria undergo a lifestyle transition from a planktonic motile state in the environment to a biofilm state in host mucus. Cyclic diguanylate (c-di-GMP) is a cytoplasmic signaling molecule that is important for regulating motility-biofilm transitions in many bacterial species. V. fischeri encodes 50 proteins predicted to synthesize and/or degrade c-di-GMP, but a role for c-di-GMP regulation during host colonization has not been investigated. We examined strains exhibiting either low or high levels of c-di-GMP during squid colonization and found that while a low-c-di-GMP strain had no colonization defect, a high c-di-GMP strain was severely impaired. Expression of a heterologous c-di-GMP phosphodiesterase restored colonization, demonstrating that the effect is due to high c-di-GMP levels. In the constitutive high-c-di-GMP state, colonizing V. fischeri exhibited reduced motility, altered biofilm aggregate morphology, and a regulatory interaction where transcription of one polysaccharide locus is inhibited by the presence of the other polysaccharide. Our results highlight the importance of proper c-di-GMP regulation during beneficial animal colonization, illustrate multiple pathways regulated by c-di-GMP in the host, and uncover an interplay of multiple exopolysaccharide systems in host-associated aggregates. IMPORTANCE There is substantial interest in studying cyclic diguanylate (c-di-GMP) in pathogenic and environmental bacteria, which has led to an accepted paradigm in which high c-di-GMP levels promote biofilm formation and reduce motility. However, considerably less focus has been placed on understanding how this compound contributes to beneficial colonization. Using the Vibrio fischeri-Hawaiian bobtail squid study system, we took advantage of recent genetic advances in the bacterium to modulate c-di-GMP levels and measure colonization and track c-di-GMP phenotypes in a symbiotic interaction. Studies in the animal host revealed a c-di-GMP-dependent genetic interaction between two distinct biofilm polysaccharides, Syp and cellulose, that was not evident in culture-based studies: elevated c-di-GMP altered the composition and abundance of the in vivo biofilm by decreasing syp transcription due to increased cellulose synthesis. This study reveals important parallels between pathogenic and beneficial colonization and additionally identifies c-di-GMP-dependent regulation that occurs specifically in the squid host.


Asunto(s)
Aliivibrio fischeri , GMP Cíclico , Aliivibrio fischeri/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Celulosa/metabolismo , GMP Cíclico/metabolismo , Decapodiformes/microbiología , Regulación Bacteriana de la Expresión Génica , Simbiosis
5.
Biophys J ; 121(13): 2653-2662, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398019

RESUMEN

Symbiotic bacteria often navigate complex environments before colonizing privileged sites in their host organism. Chemical gradients are known to facilitate directional taxis of these bacteria, guiding them toward their eventual destination. However, less is known about the role of physical features in shaping the path the bacteria take and defining how they traverse a given space. The flagellated marine bacterium Vibrio fischeri, which forms a binary symbiosis with the Hawaiian bobtail squid, Euprymna scolopes, must navigate tight physical confinement during colonization, squeezing through a tissue bottleneck constricting to ∼2 µm in width on the way to its eventual home. Using microfluidic in vitro experiments, we discovered that V. fischeri cells alter their behavior upon entry into confined space, straightening their swimming paths and promoting escape from confinement. Using a computational model, we attributed this escape response to two factors: reduced directional fluctuation and a refractory period between reversals. Additional experiments in asymmetric capillary tubes confirmed that V. fischeri quickly escape from confined ends, even when drawn into the ends by chemoattraction. This avoidance was apparent down to a limit of confinement approaching the diameter of the cell itself, resulting in a balance between chemoattraction and evasion of physical confinement. Our findings demonstrate that nontrivial distributions of swimming bacteria can emerge from simple physical gradients in the level of confinement. Tight spaces may serve as an additional, crucial cue for bacteria while they navigate complex environments to enter specific habitats.


Asunto(s)
Espacios Confinados , Natación , Aliivibrio fischeri/fisiología , Animales , Decapodiformes/microbiología , Decapodiformes/fisiología , Simbiosis/fisiología
6.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35054801

RESUMEN

Osmotic changes are common challenges for marine microorganisms. Bacteria have developed numerous ways of dealing with this stress, including reprogramming of global cellular processes. However, specific molecular adaptation mechanisms to osmotic stress have mainly been investigated in terrestrial model bacteria. In this work, we aimed to elucidate the basis of adjustment to prolonged salinity challenges at the proteome level in marine bacteria. The objects of our studies were three representatives of bacteria inhabiting various marine environments, Shewanella baltica, Vibrio harveyi and Aliivibrio fischeri. The proteomic studies were performed with bacteria cultivated in increased and decreased salinity, followed by proteolytic digestion of samples which were then subjected to liquid chromatography with tandem mass spectrometry analysis. We show that bacteria adjust at all levels of their biological processes, from DNA topology through gene expression regulation and proteasome assembly, to transport and cellular metabolism. The finding that many similar adaptation strategies were observed for both low- and high-salinity conditions is particularly striking. The results show that adaptation to salinity challenge involves the accumulation of DNA-binding proteins and increased polyamine uptake. We hypothesize that their function is to coat and protect the nucleoid to counteract adverse changes in DNA topology due to ionic shifts.


Asunto(s)
Adaptación Fisiológica , Aliivibrio fischeri/fisiología , Océanos y Mares , Proteómica , Salinidad , Shewanella/fisiología , Vibrio/fisiología , Adaptación Fisiológica/genética , Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Ontología de Genes , Chaperonas Moleculares/metabolismo , Ácidos Nucleicos/metabolismo , Concentración Osmolar , Ósmosis , Presión Osmótica , Unión Proteica , Proteoma/metabolismo , Shewanella/genética , Shewanella/metabolismo , Transcripción Genética , Vibrio/genética , Vibrio/metabolismo
7.
Gene ; 809: 146048, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34756963

RESUMEN

Colonization of the squid Euprymna scolopes by the bacterium Vibrio fischeri depends on bacterial biofilm formation, motility, and bioluminescence. Previous work has demonstrated an inhibitory role for the small RNA (sRNA) Qrr1 in quorum-induced bioluminescence of V. fischeri, but the contribution of the corresponding sRNA chaperone, Hfq, was not examined. We thus hypothesized that V. fischeri Hfq similarly functions to inhibit bacterial bioluminescence as well as regulate other key steps of symbiosis, including bacterial biofilm formation and motility. Surprisingly, deletion of hfq increased luminescence of V. fischeri beyond what was observed for the loss of qrr1 sRNA. Epistasis experiments revealed that, while Hfq contributes to the Qrr1-dependent regulation of light production, it also functions independently of Qrr1 and its downstream target, LitR. This Hfq-dependent, Qrr1-independent regulation of bioluminescence is also independent of the major repressor of light production in V. fischeri, ArcA. We further determined that Hfq is required for full motility of V. fischeri in a mechanism that partially depends on the Qrr1/LitR regulators. Finally, Hfq also appears to function in the control of biofilm formation: loss of Hfq delayed the timing and diminished the extent of wrinkled colony development, but did not eliminate the production of SYP-polysaccharide-dependent cohesive colonies. Furthermore, loss of Hfq enhanced production of cellulose and resulted in increased Congo red binding. Together, these findings point to Hfq as an important regulator of multiple phenotypes relevant to symbiosis between V. fischeri and its squid host.


Asunto(s)
Aliivibrio fischeri/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Interferente Pequeño/metabolismo , Aliivibrio fischeri/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , Celulosa/metabolismo , Regulación Bacteriana de la Expresión Génica , Luminiscencia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fenotipo
8.
Microbiologyopen ; 10(5): e1237, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34713610

RESUMEN

Vibrio alginolyticus and Vibrio (Aliivibrio) fischeri are Gram-negative bacteria found globally in marine environments. During the past decade, studies have shown that certain Gram-negative bacteria, including Vibrio species (cholerae, parahaemolyticus, and vulnificus) are capable of using exogenous polyunsaturated fatty acids (PUFAs) to modify the phospholipids of their membrane. Moreover, exposure to exogenous PUFAs has been shown to affect certain phenotypes that are important factors of virulence. The purpose of this study was to investigate whether V. alginolyticus and V. fischeri are capable of responding to exogenous PUFAs by remodeling their membrane phospholipids and/or altering behaviors associated with virulence. Thin-layer chromatography (TLC) analyses and ultra-performance liquid chromatography-electrospray ionization mass spectrometry (UPLC/ESI-MS) confirmed incorporation of all PUFAs into membrane phosphatidylglycerol and phosphatidylethanolamine. Several growth phenotypes were identified when individual fatty acids were supplied in minimal media and as sole carbon sources. Interestingly, several PUFAs acids inhibited growth of V. fischeri. Significant alterations to membrane permeability were observed depending on fatty acid supplemented. Strikingly, arachidonic acid (20:4) reduced membrane permeability by approximately 35% in both V. alginolyticus and V. fischeri. Biofilm assays indicated that fatty acid influence was dependent on media composition and temperature. All fatty acids caused decreased swimming motility in V. alginolyticus, while only linoleic acid (18:2) significantly increased swimming motility in V. fischeri. In summary, exogenous fatty acids cause a variety of changes in V. alginolyticus and V. fischeri, thus adding these bacteria to a growing list of Gram-negatives that exhibit versatility in fatty acid utilization and highlighting the potential for environmental PUFAs to influence phenotypes associated with planktonic, beneficial, and pathogenic associations.


Asunto(s)
Aliivibrio fischeri/fisiología , Permeabilidad de la Membrana Celular , Membrana Celular/metabolismo , Ácidos Grasos Insaturados/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceroles/metabolismo , Vibrio alginolyticus/fisiología , Organismos Acuáticos/fisiología , Biopelículas , Fenotipo , Vibriosis/microbiología , Virulencia/efectos de los fármacos
9.
mBio ; 12(5): e0240221, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34579565

RESUMEN

Microbes colonize the apical surfaces of polarized epithelia in nearly all animal taxa. In one example, the luminous bacterium Vibrio fischeri enters, grows to a dense population within, and persists for months inside, the light-emitting organ of the squid Euprymna scolopes. Crucial to the symbiont's success after entry is the ability to trigger the constriction of a host tissue region (the "bottleneck") at the entrance to the colonization site. Bottleneck constriction begins at about the same time as bioluminescence, which is induced in V. fischeri through an autoinduction process called quorum sensing. Here, we asked the following questions: (i) Are the quorum signals that induce symbiont bioluminescence also involved in triggering the constriction? (ii) Does improper signaling of constriction affect the normal maintenance of the symbiont population? We manipulated the presence of three factors, the two V. fischeri quorum signal synthases, AinS and LuxI, the transcriptional regulator LuxR, and light emission itself, and found that the major factor triggering and maintaining bottleneck constriction is an as yet unknown effector(s) regulated by LuxIR. Treating the animal with chemical inhibitors of actin polymerization reopened the bottlenecks, recapitulating the host's response to quorum-sensing defective symbionts, as well as suggesting that actin polymerization is the primary mechanism underlying constriction. Finally, we found that these host responses to the presence of symbionts changed as a function of tissue maturation. Taken together, this work broadens our concept of how quorum sensing can regulate host development, thereby allowing bacteria to maintain long-term tissue associations. IMPORTANCE Interbacterial signaling within a host-associated population can have profound effects on the behavior of the bacteria, for instance, in their production of virulence/colonization factors; in addition, such signaling can dictate the nature of the outcome for the host, in both pathogenic and beneficial associations. Using the monospecific squid-vibrio model of symbiosis, we examined how quorum-sensing regulation by the Vibrio fischeri population induces a biogeographic tissue phenotype that promotes the retention of this extracellular symbiont within the light organ of its host, Euprymna scolopes. Understanding the influence of bacterial symbionts on key sites of tissue architecture has implications for all horizontally transmitted symbioses, especially those that colonize an epithelial surface within the host.


Asunto(s)
Aliivibrio fischeri/crecimiento & desarrollo , Aliivibrio fischeri/fisiología , Decapodiformes/microbiología , Aliivibrio fischeri/química , Aliivibrio fischeri/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Decapodiformes/fisiología , Regulación Bacteriana de la Expresión Génica , Interacciones Microbiota-Huesped , Luminiscencia , Percepción de Quorum , Simbiosis
10.
Mol Microbiol ; 116(3): 926-942, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34212439

RESUMEN

Sulfur is in cellular components of bacteria and is, therefore, an element necessary for growth. However, mechanisms by which bacteria satisfy their sulfur needs within a host are poorly understood. Vibrio fischeri is a bacterial symbiont that colonizes, grows, and produces bioluminescence within the light organ of the Hawaiian bobtail squid, which provides an experimental platform for investigating sulfur acquisition in vivo. Like other γ-proteobacteria, V. fischeri fuels sulfur-dependent anabolic processes with intracellular cysteine. Within the light organ, the abundance of a ΔcysK mutant, which cannot synthesize cysteine through sulfate assimilation, is attenuated, suggesting sulfate import is necessary for V. fischeri to establish symbiosis. Genes encoding sulfate-import systems of other bacteria that assimilate sulfate were not identified in the V. fischeri genome. A transposon mutagenesis screen implicated YfbS as a sulfate importer. YfbS is necessary for growth on sulfate and in the marine environment. During symbiosis, a ΔyfbS mutant is attenuated and strongly expresses sulfate-assimilation genes, which is a phenotype associated with sulfur-starved cells. Together, these results suggest V. fischeri imports sulfate via YfbS within the squid light organ, which provides insight into the molecular mechanisms by which bacteria harvest sulfur in vivo.


Asunto(s)
Aliivibrio fischeri/fisiología , Decapodiformes/microbiología , Proteínas de Transporte de Membrana/genética , Sulfatos/metabolismo , Azufre/metabolismo , Simbiosis , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Cisteína/metabolismo , Interacciones Microbiota-Huesped , Proteínas de Transporte de Membrana/metabolismo , Mutagénesis , Mutación , Filogenia
11.
mSphere ; 6(4): e0128820, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34287008

RESUMEN

Bacteria employ diverse competitive strategies to enhance fitness and promote their own propagation. However, little is known about how symbiotic bacteria modulate competitive mechanisms as they compete for a host niche. The bacterium Vibrio fischeri forms a symbiotic relationship with marine animals and encodes a type VI secretion system (T6SS), which is a contact-dependent killing mechanism used to eliminate competitors during colonization of the Euprymna scolopes squid light organ. Like other horizontally acquired symbionts, V. fischeri experiences changes in its physical and chemical environment during symbiosis establishment. Therefore, we probed both environmental and host-like conditions to identify ecologically relevant cues that control T6SS-dependent competition during habitat transition. Although the T6SS did not confer a competitive advantage for V. fischeri strain ES401 under planktonic conditions, a combination of both host-like pH and viscosity was necessary for T6SS competition. For ES401, high viscosity activates T6SS expression and neutral/acidic pH promotes cell-cell contact for killing, and this pH-dependent phenotype was conserved in the majority of T6SS-encoding strains examined. We also identified a subset of V. fischeri isolates that engaged in T6SS-mediated competition at high viscosity under both planktonic and host-like pH conditions. T6SS phylogeny revealed that strains with pH-dependent phenotypes cluster together to form a subclade within the pH-independent strains, suggesting that V. fischeri may have recently evolved to limit competition to the host niche. IMPORTANCE Bacteria have evolved diverse strategies to compete for limited space and resources. Because these mechanisms can be costly to use, their expression and function are often restricted to specific environments where the benefits outweigh the costs. However, little is known about the specific cues that modulate competitive mechanisms as bacterial symbionts transition between free-living and host habitats. Here, we used the bioluminescent squid and fish symbiont Vibrio fischeri to probe for host and environmental conditions that control interbacterial competition via the type VI secretion system. Our findings identify a new host-specific cue that promotes competition among many but not all V. fischeri isolates, underscoring the utility of studying multiple strains to reveal how competitive mechanisms may be differentially regulated among closely related populations as they evolve to fill distinct niches.


Asunto(s)
Aliivibrio fischeri/fisiología , Decapodiformes/microbiología , Interacciones Microbiota-Huesped , Simbiosis , Sistemas de Secreción Tipo VI/metabolismo , Aliivibrio fischeri/clasificación , Aliivibrio fischeri/crecimiento & desarrollo , Animales , Ecosistema , Concentración de Iones de Hidrógeno , Concentración Osmolar , Fenotipo , Filogenia , Sistemas de Secreción Tipo VI/clasificación , Viscosidad
12.
Nat Rev Microbiol ; 19(10): 654-665, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34089008

RESUMEN

As our understanding of the human microbiome progresses, so does the need for natural experimental animal models that promote a mechanistic understanding of beneficial microorganism-host interactions. Years of research into the exclusive symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium Vibrio fischeri have permitted a detailed understanding of those bacterial genes underlying signal exchange and rhythmic activities that result in a persistent, beneficial association, as well as glimpses into the evolution of symbiotic competence. Migrating from the ambient seawater to regions deep inside the light-emitting organ of the squid, V. fischeri experiences, recognizes and adjusts to the changing environmental conditions. Here, we review key advances over the past 15 years that are deepening our understanding of these events.


Asunto(s)
Aliivibrio fischeri/fisiología , Decapodiformes/microbiología , Interacciones Microbiota-Huesped , Simbiosis , Animales , Decapodiformes/anatomía & histología , Evolución Molecular , Hawaii , Agua de Mar/microbiología
13.
Nat Rev Microbiol ; 19(10): 666-679, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34089010

RESUMEN

For more than 30 years, the association between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium Vibrio fischeri has been studied as a model system for understanding the colonization of animal epithelia by symbiotic bacteria. The squid-vibrio light-organ system provides the exquisite resolution only possible with the study of a binary partnership. The impact of this relationship on the partners' biology has been broadly characterized, including their ecology and evolutionary biology as well as the underlying molecular mechanisms of symbiotic dynamics. Much has been learned about the factors that foster initial light-organ colonization, and more recently about the maturation and long-term maintenance of the association. This Review synthesizes the results of recent research on the light-organ association and also describes the development of new horizons for E. scolopes as a model organism that promises to inform biology and biomedicine about the basic nature of host-microorganism interactions.


Asunto(s)
Aliivibrio fischeri/fisiología , Decapodiformes/microbiología , Interacciones Microbiota-Huesped/genética , Simbiosis , Aliivibrio fischeri/genética , Animales , Decapodiformes/anatomía & histología , Evolución Molecular , Femenino , Hawaii , Interacciones Microbiota-Huesped/fisiología , Masculino , Simbiosis/genética , Simbiosis/fisiología
14.
Phys Biol ; 18(4)2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34114973

RESUMEN

Many bacteria communicate using diffusible pheromone signals known as autoinducers. When the autoinducer concentration reaches a threshold, which requires a minimum population density or 'quorum', the bacteria activate specific gene regulatory pathways. Simple diffusion of autoinducer can activate quorum-dependent pathways in cells that are located at substantial distances from the secreting source. However, modeling has predicted that autoinducer diffusion, coupled with positive feedback regulation in autoinducer synthesis, could also allow a quorum-regulated behavior to spread more rapidly through a population by moving as a self-sustaining front at constant speed. Here we show that such propagation can occur in a population of bacteria whose quorum pathway operates under its own natural regulation. We find that in unstirred populations ofVibrio fischeri, introduction of autoinducer at one location triggers a wavelike traveling front of natural bioluminescence. The front moves with a well-defined speed ∼2.5 mm h-1, eventually outrunning the slower diffusional spreading of the initial stimulus. Consistent with predictions from modeling, the wave travels until late in growth, when population-wide activation occurs due to basal autoinducer production. Subsequent rounds of waves, including waves propagating in the reverse direction, can also be observed late in the growth ofV.fischeriunder natural regulation. Using an engineered,lac-dependent strain, we show that local stimuli other than autoinducers can also elicit a self-sustaining, propagating response. Our data show that the wavelike dynamics predicted by simple mathematical models of quorum signaling are readily detected in bacterial populations functioning under their own natural regulation, and that other, more complex traveling phenomena are also present. Because a traveling wave can substantially increase the efficiency of intercellular communication over macroscopic distances, our data indicate that very efficient modes of communication over distance are available to unmixed populations ofV.fischeriand other microbes.


Asunto(s)
Aliivibrio fischeri/fisiología , Fenómenos Fisiológicos Bacterianos , Percepción de Quorum , Transducción de Señal , Difusión , Regulación Bacteriana de la Expresión Génica , Microorganismos Modificados Genéticamente/fisiología
15.
J Bacteriol ; 203(15): e0015521, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34031036

RESUMEN

The symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and its exclusive light organ symbiont, Vibrio fischeri, provides a natural system in which to study host-microbe specificity and gene regulation during the establishment of a mutually beneficial symbiosis. Colonization of the host relies on bacterial biofilm-like aggregation in the squid mucus field. Symbiotic biofilm formation is controlled by a two-component signaling (TCS) system consisting of regulators RscS-SypF-SypG, which together direct transcription of the symbiosis polysaccharide Syp. TCS systems are broadly important for bacteria to sense environmental cues and then direct changes in behavior. Previously, we identified the hybrid histidine kinase BinK as a strong negative regulator of V. fischeri biofilm regulation, and here we further explore the function of BinK. To inhibit biofilm formation, BinK requires the predicted phosphorylation sites in both the histidine kinase (H362) and receiver (D794) domains. Furthermore, we show that RscS is not essential for host colonization when binK is deleted from strain ES114, and imaging of aggregate size revealed no benefit to the presence of RscS in a background lacking BinK. Strains lacking RscS still suffered in competition. Finally, we show that BinK functions to inhibit biofilm gene expression in the light organ crypts, providing evidence for biofilm gene regulation at later stages of host colonization. Overall, this study provides direct evidence for opposing activities of RscS and BinK and yields novel insights into biofilm regulation during the maturation of a beneficial symbiosis. IMPORTANCE Bacteria are often in a biofilm state, and transitions between planktonic and biofilm lifestyles are important for pathogenic, beneficial, and environmental microbes. The critical nature of biofilm formation during Vibrio fischeri colonization of the Hawaiian bobtail squid light organ provides an opportunity to study development of this process in vivo using a combination of genetic and imaging approaches. The current work refines the signaling circuitry of the biofilm pathway in V. fischeri, provides evidence that biofilm regulatory changes occur in the host, and identifies BinK as one of the regulators of that process. This study provides information about how bacteria regulate biofilm gene expression in an intact animal host.


Asunto(s)
Aliivibrio fischeri/enzimología , Aliivibrio fischeri/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Biopelículas , Histidina Quinasa/metabolismo , Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiología , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Decapodiformes/microbiología , Decapodiformes/fisiología , Histidina Quinasa/química , Histidina Quinasa/genética , Dominios Proteicos , Simbiosis
16.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33187995

RESUMEN

N-Acetylmuramoyl-l-alanine amidases are periplasmic hydrolases that cleave the amide bond between N-acetylmuramic acid and alanine in peptidoglycan (PG). Unlike many Gram-negative bacteria that encode redundant periplasmic amidases, Vibrio fischeri appears to encode a single protein that is homologous to AmiB of Vibrio cholerae We screened a V. fischeri transposon mutant library for strains altered in biofilm production and discovered a biofilm-overproducing strain with an insertion in amiB (VF_2326). Further characterization of biofilm enhancement suggested that this phenotype was due to the overproduction of cellulose, and it was dependent on the bcsA cellulose synthase. Additionally, the amiB mutant was nonmotile, perhaps due to defects in its ability to septate during division. The amidase mutant was unable to compete with the wild type for the colonization of V. fischeri's symbiotic host, the squid Euprymna scolopes In single-strain inoculations, host squid inoculated with the mutant eventually became colonized but with a much lower efficiency than in squid inoculated with the wild type. This observation was consistent with the pleiotropic effects of the amiB mutation and led us to speculate that motile suppressors of the amiB mutant were responsible for the partially restored colonization. In culture, motile suppressor mutants carried point mutations in a single gene (VF_1477), resulting in a partial restoration of wild-type motility. In addition, these point mutations reversed the effect of the amiB mutation on cellulosic biofilm production. These data are consistent with V. fischeri AmiB possessing amidase activity; they also suggest that AmiB suppresses cellulosic biofilm formation but promotes successful host colonization.IMPORTANCE Peptidoglycan (PG) is a critical microbe-associated molecular pattern (MAMP) that is sloughed by cells of V. fischeri during symbiotic colonization of squid. Specifically, this process induces significant remodeling of a specialized symbiotic light organ within the squid mantle cavity. This phenomenon is reminiscent of the loss of ciliated epithelium in patients with whooping cough due to the production of PG monomers by Bordetella pertussis Furthermore, PG processing machinery can influence susceptibility to antimicrobials. In this study, we report roles for the V. fischeri PG amidase AmiB, including the beneficial colonization of squid, underscoring the urgency to more deeply understand PG processing machinery and the downstream consequences of their activities.


Asunto(s)
Aliivibrio fischeri/enzimología , Amidohidrolasas/fisiología , Proteínas Bacterianas/fisiología , Aliivibrio fischeri/citología , Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiología , Amidohidrolasas/genética , Proteínas Bacterianas/genética , Biopelículas , División Celular , Mutación , Simbiosis
17.
PLoS Biol ; 18(11): e3000934, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33141816

RESUMEN

The regulatory noncoding small RNAs (sRNAs) of bacteria are key elements influencing gene expression; however, there has been little evidence that beneficial bacteria use these molecules to communicate with their animal hosts. We report here that the bacterial sRNA SsrA plays an essential role in the light-organ symbiosis between Vibrio fischeri and the squid Euprymna scolopes. The symbionts load SsrA into outer membrane vesicles, which are transported specifically into the epithelial cells surrounding the symbiont population in the light organ. Although an SsrA-deletion mutant (ΔssrA) colonized the host to a normal level after 24 h, it produced only 2/10 the luminescence per bacterium, and its persistence began to decline by 48 h. The host's response to colonization by the ΔssrA strain was also abnormal: the epithelial cells underwent premature swelling, and host robustness was reduced. Most notably, when colonized by the ΔssrA strain, the light organ differentially up-regulated 10 genes, including several encoding heightened immune-function or antimicrobial activities. This study reveals the potential for a bacterial symbiont's sRNAs not only to control its own activities but also to trigger critical responses promoting homeostasis in its host. In the absence of this communication, there are dramatic fitness consequences for both partners.


Asunto(s)
Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Animales , Decapodiformes/genética , Decapodiformes/inmunología , Decapodiformes/microbiología , Genes Bacterianos , Interacciones Microbiota-Huesped/inmunología , Inmunidad Innata/genética , Inmunidad Innata/fisiología , Mutación , Simbiosis/genética , Simbiosis/inmunología , Simbiosis/fisiología
18.
mBio ; 11(5)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873761

RESUMEN

The bioluminescent bacterium Vibrio fischeri forms a mutually beneficial symbiosis with the Hawaiian bobtail squid, Euprymna scolopes, in which the bacteria, housed inside a specialized light organ, produce light used by the squid in its nocturnal activities. Upon hatching, E. scolopes juveniles acquire V. fischeri from the seawater through a complex process that requires, among other factors, chemotaxis by the bacteria along a gradient of N-acetylated sugars into the crypts of the light organ, the niche in which the bacteria reside. Once inside the light organ, V. fischeri transitions into a symbiotic, sessile state in which the quorum-signaling regulator LitR induces luminescence. In this work we show that expression of litR and luminescence are repressed by a homolog of the Vibrio cholerae virulence factor TcpP, which we have named HbtR. Further, we demonstrate that LitR represses genes involved in motility and chemotaxis into the light organ and activates genes required for exopolysaccharide production.IMPORTANCE TcpP homologs are widespread throughout the Vibrio genus; however, the only protein in this family described thus far is a V. cholerae virulence regulator. Here, we show that HbtR, the TcpP homolog in V. fischeri, has both a biological role and regulatory pathway completely unlike those in V. cholerae Through its repression of the quorum-signaling regulator LitR, HbtR affects the expression of genes important for colonization of the E. scolopes light organ. While LitR becomes activated within the crypts and upregulates luminescence and exopolysaccharide genes and downregulates chemotaxis and motility genes, it appears that HbtR, upon expulsion of V. fischeri cells into seawater, reverses this process to aid the switch from a symbiotic to a planktonic state. The possible importance of HbtR to the survival of V. fischeri outside its animal host may have broader implications for the ways in which bacteria transition between often vastly different environmental niches.


Asunto(s)
Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiología , Proteínas Bacterianas/genética , Simbiosis , Factores de Transcripción/genética , Animales , Proteínas Bacterianas/metabolismo , Quimiotaxis/genética , Decapodiformes/microbiología , Luminiscencia , Factores de Virulencia/genética
19.
Curr Protoc Microbiol ; 57(1): e103, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32497392

RESUMEN

Vibrio fischeri is a nonpathogenic organism related to pathogenic Vibrio species that can be readily grown and stored with common laboratory equipment. In this article, protocols for routine growth, storage, and phenotypic assessment of V. fischeri, as well as recipes for useful media, are included. Specifically, this article describes procedures and considerations for growth of this microbe in complex and minimal media. It also describes assays for biofilm formation, motility, and bioluminescence, three commonly assessed phenotypes of V. fischeri. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Growth of V. fischeri from frozen stocks Basic Protocol 2: Growth of V. fischeri in rich, undefined liquid medium Alternate Protocol 1: Growth of V. fischeri in minimal medium Basic Protocol 3: Storage of V. fischeri in frozen stocks Basic Protocol 4: Biofilm assay on solid agar Alternate Protocol 2: Biofilm assay in shaking liquid culture Alternate Protocol 3: Biofilm assay in static liquid culture Basic Protocol 5: Motility assay Basic Protocol 6: Luminescence assay.


Asunto(s)
Aliivibrio fischeri/crecimiento & desarrollo , Técnicas Bacteriológicas/métodos , Preservación Biológica/métodos , Aliivibrio fischeri/efectos de los fármacos , Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiología , Antibacterianos/farmacología , Biopelículas , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Laboratorios , Fenotipo
20.
mBio ; 11(3)2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457244

RESUMEN

Microbes live in complex microniches within host tissues, but how symbiotic partners communicate to create such niches during development remains largely unexplored. Using confocal microscopy and symbiont genetics, we characterized the shaping of host microenvironments during light organ colonization of the squid Euprymna scolopes by the bacterium Vibrio fischeri During embryogenesis, three pairs of invaginations form sequentially on the organ's surface, producing pores that lead to interior compressed tubules at different stages of development. After hatching, these areas expand, allowing V. fischeri cells to enter and migrate ∼120 µm through three anatomically distinct regions before reaching blind-ended crypt spaces. A dynamic gatekeeper, or bottleneck, connects these crypts with the migration path. Once V. fischeri cells have entered the crypts, the bottlenecks narrow, and colonization by the symbiont population becomes spatially restricted. The actual timing of constriction and restriction varies with crypt maturity and with different V. fischeri strains. Subsequently, starting with the first dawn following colonization, the bottleneck controls a lifelong cycle of dawn-triggered expulsions of most of the symbionts into the environment and a subsequent regrowth in the crypts. Unlike other developmental phenotypes, bottleneck constriction is not induced by known microbe-associated molecular patterns (MAMPs) or by V. fischeri-produced bioluminescence, but it does require metabolically active symbionts. Further, while symbionts in the most mature crypts have a higher proportion of live cells and a greater likelihood of expulsion at dawn, they have a lower resistance to antibiotics. The overall dynamics of these distinct microenvironments reflect the complexity of the host-symbiont dialogue.IMPORTANCE The complexity, inaccessibility, and time scales of initial colonization of most animal microbiomes present challenges for the characterization of how the bacterial symbionts influence the form and function of tissues in the minutes to hours following the initial interaction of the partners. Here, we use the naturally occurring binary squid-vibrio association to explore this phenomenon. Imaging of the spatiotemporal landscape of this symbiosis during its onset provides a window into the impact of differences in both host-tissue maturation and symbiont strain phenotypes on the establishment of a dynamically stable symbiotic system. These data provide evidence that the symbionts shape the host-tissue landscape and that tissue maturation impacts the influence of strain-level differences on the daily rhythms of the symbiosis, the competitiveness for colonization, and antibiotic sensitivity.


Asunto(s)
Aliivibrio fischeri/fisiología , Decapodiformes/microbiología , Simbiosis , Animales , Proteínas Luminiscentes/metabolismo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...